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1   Introduction 

Forecasting All India Summer Monsoon Rainfall (AISMR), one or more seasons in 
advance, has been an elusive goal for hydrologists, meteorologists, and astrologers 
alike. In spite of advances in data collection facilities, improvements in computational 
capabilities, and progress in our understanding of the physics of the monsoon system, 
our ability to forecast AISMR has remained more or less unchanged in past several 
decades. On one hand, physically based numerical prediction models that are consid-
ered a panacea for daily weather forecasting have not evolved to a stage where they 
can realistically predict or even simulate annual variations in Indian monsoon. On the 
other hand, statistical models that have traditionally been used for making operational 
forecasts have failed in forecasting extreme monsoon rainfall years. It has been sug-
gested that, in future, physically based models may improve to an extent where they 
can produce useful forecasts. However, until then, it would be prudent to develop sta-
tistical forecast models using state-of-the-art soft-computing techniques. 

Statistical forecasting of AISMR has a long, venerable, and vulnerable history. The 
first ever scientific forecast of AISMR was made by H. F. Blanford for year 1878, af-
ter the great famine of 1877 that took a heavy toll on human lives. During initial 
years, forecasts issued were subjective and met limited success. Later, in early twenti-
eth century the forecast skill of AISMR improved significantly mainly due to initia-
tives taken by Sir Gilbert Thomas Walker. Sir Walker, who was then the Director 
General of India Meteorology Department (IMD), collected and analyzed vast 
amounts of weather data from India and abroad. He discovered Southern Oscillation 
(SO), a major atmosphere phenomenon over tropical Pacific Ocean that was later 
linked to El Niño (Bjerknes 1969). The discovery of link between AISMR and El 
Niño / SO (ENSO) led to rapid development in statistical forecasting models. How-
ever, initial encouraging performance did not last long because the link between 
AISMR and ENSO started weakening in the 1980s (Kumar et al. 1999). 

The work of Sir Walker encouraged researchers to find other atmospheric and oce-
anic variables over different parts of the world that can be used as potential predictors 
for AISMR. Some of the important predictors that came out these endeavors are : (i) 
global sea surface temperature (Sahai et al. 2003; Pai and Rajeevan 2006), (ii) Hima-
layan and Eurasian snow cover (Fasullo 2004; Kripalani et al. 2003), (iii) atmospheric 
circulation patterns like position of 500 hPa ridge over India (Prasad and Singh 1992), 
and wind anomalies (Bhalme et al. 1987; Gadgil et al. 2004), (iv) land surface condi-
tions over Northern Hemisphere (Rajeevan 2002; Robock et al. 2003), and (v) the 
previous values of AISMR series (Kishtawal et al. 2003; Iyengar and Raghu Kanth 
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2005). However, recent evidences suggest that the relationship between most of these 
predictors and AISMR is not stationary but varies on decadal to interdecadal time 
scales (Rajeevan et al. 2007; Gadgil et al. 2002; Kumar et al. 1999; Clark et al. 2000). 
Further, studies indicate that some of the predictors have even lost their importance 
over the course of time. 

The facts mentioned in the previous paragraphs indicate that the successful fore-
casting of AISMR needs a statistical model that not only updates the relationship be-
tween the predictors and the predictand in light of new data but also dynamically  
selects the appropriate set of predictors for making forecasts. However, to date, little 
has been done to address this problem. The current strategy is to constantly monitor 
the performance of the model, and subjectively change the structure of the model, its 
inputs, and even training period in case of model failure (Rajeevan et al. 2007). Obvi-
ously, updating the model in this way leaves no possibility for model validation, and 
consequently no confidence can be assigned to the model predictions. 

This study seeks to address the above mentioned issue by developing a dynamic 
forecasting model under Bayesian framework. The model not only updates the rela-
tionship between the predictors and the predictand as and when new data become 
available, but also dynamically selects the appropriate set of predictors. Further, we 
also suggest a way for assessing forecasting skill of the model. The model has only 
one adjustable parameter that helps in reducing the level of subjectivity in making 
forecasts. The efficacy of the model is assessed by evaluating its performance in pre-
dicting AISMR from 1951 to 2005, using global sea surface temperature (SST) data-
set as the only predictor. 

The proposed model, in its first step, uses probabilistic principal component analy-
sis (PPCA) (Roweis 1998; Tipping and Bishop 1999) in combination with Bayesian 
model selection (Minka 2001) to reduce the dimensionality of the SST data. In the 
second step, the model uses a sparse Bayesian learning algorithm (Tipping 2001) to 
select the appropriate set of predictors, and to learn the relationship between selected 
predictors and AISMR, the predictand. The sparse Bayesian model is known as rele-
vance vector machine (RVM) owing to its capability to identify most relevant patterns 
or predictors for making forecast. The parameters of the RVM model are estimated 
using a sequential learning algorithm. It is to be emphasized that the RVM can be 
used to learn non-linear relationships between predictors and predictand, however for 
the sake of simplicity and interpretability of results, only linear relationships are in-
vestigated in this work. 

The remainder of this paper is structured as follows. The mathematical formulations of 
PPCA, Bayesian model selection, and RVM are presented in Sect. 2. Following this, data 
used in the study are described in Sect. 3. Details of the proposed methodology are given 
in Sec. 4, and the results obtained are presented and discussed in Sect. 5. Finally, a set of 
concluding remarks and our recommendations are provided in Sect. 6. 

2   Mathematical Formulation 

This section presents the mathematical formulation for probabilistic principal compo-
nent analysis (PPCA), Bayesian model selection, and relevance vector machine 
(RVM) in the context of forecasting AISMR. 



 Statistical Forecasting of Indian Summer Monsoon Rainfall: An Enduring Challenge 209 

2.1   Probabilistic Principal Component Analysis (PPCA) 

Principal component analysis (PCA) and its variants like empirical orthogonal tele-
connections (van den Dool et al. 2000), nonlinear principal component analysis 
(Monahan 2001), rotational techniques (Horel 1981), space-time principal component 
(Vautard et al. 1996) and closely related methods such as canonical component analy-
sis (Shabbar and Barnston 1996), are arguably the most commonly used methods for 
data compression, data reconstruction, and developing prediction models in hydro-
logic and meteorologic literature. PCA has also been successfully used as a feature 
extraction method in developing forecast models for AISMR (Cannon and McKendry 
1999; Rajeevan et al. 2000; Pai and Rajeevan 2006). 

However, a serious limitation of conventional PCA, when applied to inherently 
noisy hydro-meteorologic data, is the absence of an associated probabilistic model for 
the observed data. Tipping and Bishop (1999) proposed a probabilistic approach to 
PCA that can overcome this limitation. Besides this, probabilistic principal compo-
nent analysis (PPCA) offers a number of other advantages, including a principled way 
for handling missing values in the data, and an objective way to decide the optimum 
number of principal components. 

Given a p  dimensional observed data variable x  p⎛ ⎞
⎜ ⎟
⎝ ⎠

∈ℜx , the goal of PPCA is to 

find a q  dimensional principal variable z  q⎛ ⎞
⎜ ⎟
⎝ ⎠

∈ℜz , such that the number of princi-

pal components q  is less than p . Assuming q  is known, the reconstruction of data 

variable from principal variable is given by1  

= + +x Wz μ ε  (1)

where, ε  is a p  dimensional Gaussian noise, with zero mean and covariance 2
pσ I , 

and μ  is a p  dimensional vector. W  is a p q×  transformation matrix whose col-

umns span a linear subspace within the p  dimensional observed data variable space.  

Due to the assumption of Gaussian noise, the distribution of observed data variable 
x  conditioned on z  is given by  

( ) 2| pp σ⎛ ⎞
⎜ ⎟
⎝ ⎠

= + ,x z Wz μ IN  (2)

If we assign zero mean, unit covariance Gaussian prior distribution to the principal 
vector z , i.e.  

( ) 0 qp ⎛ ⎞
⎜ ⎟
⎝ ⎠

= ,z IN  (3)

then the marginal distribution of the observed variable ( )p x  also becomes Gaussian 

and is given by  

( ) ( ) ( ) ( )|  = ,p p p d= ∫x x z z z μ C N  (4)

where, the covariance matrix T 2
pσ= +C WW I . 

                                                           
1 All vectors are column vectors. A d  dimensional identity matrix is represented by dI . 
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Now consider a dataset with N  observed data points i.e. 1n n … N⎡ ⎤
⎢ ⎥⎣ ⎦= , = , ,X x . 

The log likelihood of the observed dataset, given the model (Eq. 1) is  

( ) ( ) ( ){ }2 1

1

ln ln(2 ) ln tr
2

N

n
n

N
p pσ π −⎛ ⎞

⎜ ⎟
⎝ ⎠

=

, , = = − + +∑μ W x C C SL  (5)

where T1
1
( )( )

N

n nN n=
= − −∑S x μ x μ  is the data covariance matrix. 

The model parameters W , μ , and σ  can be estimated by maximizing the likeli-

hood function (Eq. 5) corresponding to these parameters. Tipping and Bishop (1999) 
showed that the maximum likelihood solution corresponds to principal component 
analysis of the dataset X . The principal directions in X  are contained in the col-
umns of W , while the principal components z  can be calculated by Bayes’ rule as 

( ) ( )1 T 2| ( )p σ− −= − ,z x M W x μ MN  (6)

where T 2
qσ= +M W W I .  

The maximum likelihood estimate of the parameters can be either obtained explic-
itly by using analytical expressions or by using expectation maximization (EM) algo-
rithm (Roweis 1998; Tipping and Bishop 1999). For very high dimensional datasets 
like sea surface temperature (SST), EM algorithm has significant computational ad-
vantages and is therefore used in this study. 

2.2   Bayesian Model Selection 

In the above discussion of PPCA we have assumed that the dimensionality q  of the 

principal vector z  is known. In practice, subjective criteria like retaining certain per-
centage of the variance in the data or the point where the eigen value spectrum takes 
an elbow turn, are often used. However, these arbitrary thresholds cannot determine 
the true dimensionality of the principal vector and may result in models that are sig-
nificantly different among different users.  

An important advantage offered by the probabilistic interpretation of PCA is that 
an objective approach of Bayesian model selection can be used to determine the num-
ber of PCs. In Bayesian approach to model selection, the best model is the one which 
has maximum marginal likelihood over all possible values of model parameters. 

In PPCA, for a given value of q , the marginal likelihood ( )|p qx  can be calcu-

lated by integrating out the model parameters W , μ , and σ . To do this, suitable 

prior probabilities are assigned to model parameters. Minka (2001) proposed non in-
formative prior distribution for μ  and conjugate priors for W  and σ . Using these 

priors, an analytical expression for ( )|p qx  was derived. However, the estimate of 

marginal likelihood involves an integral over the Stiefel manifold that is difficult to 
compute exactly. To provide a practical solution, Minka (2001) applied Laplace’s me-
thod that aims to find a Gaussian approximation of the marginal likelihood.  
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The optimal number of principal component q̂  can then be obtained by using 

Bayesian model selection rule as  

[ ]ˆ argmax ( | )    1qq p q q p= , ≤ ≤x  (7)

2.3   Relevance Vector Machine (RVM) 

The principal components obtained from PPCA (Sect. 2.1) provide a compact repre-
sentation of the raw data. However, out of the many PCs extracted from the data, only 
few are expected to be useful for a forecasting model. The next crucial step is there-
fore to select the relevant PCs by using a feature selection algorithm. These selected 
PCs form the predictor set for the model. 

There are many feature selection algorithms available in the literature and most of 
them are restricted to static datasets. However, Indian summer monsoon is a time 
evolving system, where the predictors as well as their relationship with AISMR con-
stantly changes with time. Therefore a dynamic feature selection algorithm is re-
quired. To this end, RVM model with sequential learning algorithm is adopted in this 
study. RVM algorithm was proposed by Tipping (2001). It has excellent generaliza-
tion properties and has been successfully used in many real world applications includ-
ing hydrology (Khalil et al. 2005, 2006). However, in this study RVM was selected 
because of the following two properties: (i) automatic relevance determination that se-
lects the most relevant predictors for making forecasts, and (ii) sequential learning 
that allows model to progressively update itself as more and more data becomes 
available. In passing, it is worth mentioning that, to our knowledge, RVM has not 
been used in the context of dynamic feature selection. 

Detailed mathematical formulation of RVM is available in Scholkopf and Smola 
(2001), Tipping (2001), and Bishop (2006). Here we provide a brief overview of 
RVM algorithm. 

The PCs 1n n … N⎡ ⎤
⎢ ⎥⎣ ⎦= , = , ,Z z  extracted from PPCA form the input to the RVM. 

The nth member of the input set T
1 2{ [ ] }q

n n n n n nqz z … z∈ℜ , = , , ,z z z  constitutes the 

potential pool of predictors for making forecast at step n , that corresponds to time t . 

Further, the target value at step n  is given by 1 2{ [ ] }T
n n Ny y y y y … y∈ℜ; = , , , , and 

it corresponds to standardized values of AISMR at time t t+ Δ , where tΔ  is the lead 
time of the forecast.  

In linear RVM, the target value ny  is approximated as  

0
1

q

n i ni n
i

y w z w ε
=

= + +∑  (8)

where, 
T

0 1 qw w … w⎡ ⎤= , , ,⎣ ⎦w  is a weight vector, and [ ]T

1 N…ε ε ε= , ,  is independent 

zero mean Gaussian noise with variance 2σ . In this setting, likelihood of the ob-
served data can be written as  
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22
22

1 1

22

N

p expσ
σπσ

⎧ ⎫
⎪ ⎪⎛ ⎞
⎨ ⎬⎜ ⎟

⎝ ⎠ ⎪ ⎪
⎩ ⎭

⎛ ⎞
| , = − −⎜ ⎟

⎝ ⎠
y w y Φw  (9)

where Φ  is defined as  

11 1

21 2

1

1

1

1

q

q

N Nq

z z

z z

z z

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Φ

L

L

M M O M

L

 (10)

Under a Bayesian perspective, weights w  can be estimated by first assigning prior 
distribution to it and then estimating its posterior distribution using likelihood of the 
observed data. In this study, following Tipping (2001) a zero mean Gaussian prior of 
the form given by Eq. 11 is used. 

( ) 1

0

| 0
q

i
i

p α −⎛ ⎞
⎜ ⎟
⎝ ⎠

=

= ,∏w α N  (11)

In Eq. 11, 0

T

q…α α⎡ ⎤
⎢ ⎥⎣ ⎦

= , ,α  is a hyperparameter vector. The inverse of hyperparame-

ter 
1

iα −⎛ ⎞
⎜ ⎟
⎝ ⎠

 represents the importance of feature i  in the model. It turns out that during 

the process of maximizing the likelihood of the observed data with respect to the hy-
perparameters, many of the hyperparameters go to infinity, and the corresponding fea-
tures are removed from the model achieving sparsity in the model. 

Having defined the likelihood (Eq. 9) and the prior (Eq. 11), the next step is to find 
the posterior distribution of the parameters. The posterior distribution of the weight 
vector w  can be obtained analytically given hyperparameter values. However, there 
is no closed form equation for the posterior distribution of the hyperparameters. Nev-
ertheless, it can be reasonably approximated by maximizing the log likelihood of the 
observed data with respect to hyperparameters (Tipping 2001) as given by Eq. 12  

( )2 T 11
( ) ln | ln 2 ln

2
p Nσ π⎛ ⎞ −⎛ ⎞

⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
= , = − + +α y α R y R yL  (12)

where, 2 1 T
Nσ −= +R I ΦA Φ , and 0 1( )qdiag …α α α= , , ,A .  

The log likelihood function (Eq. 12) can be maximized by either using type 2 
maximum likelihood (Berger 1985) or by using sequential learning (Li et al. 2002; 
Tipping and Faul 2003). Here the latter approach is used, wherein the log likelihood 
of observed data is maximized with respect to hyperparameter of each feature sepa-
rately. The gradient of likelihood is given by 

1 2 2

2

( )( )

2( )
i i i i

i i i

S Q S

S

α
α α

− − −∂ =
∂ +
αL

 (13)
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where 2
iQ  is known as the quality , and iS  is known as the sparsity of the thi  feature. 

They are calculated using Eq. 14 and Eq. 15, respectively.  

1T
i i iQ −

−= φ R y  (14)

 

1T
i i i iS −

−= φ R φ  (15)

In Eqs. 14 and 15, iφ  is the thi  column of Φ  (Eq. 10) and 
11 T

i i i i iα −−
− = −R R φ φ . 

The quality term 2
iQ  measures the increment in log likelihood of the observed data y  

(Eq. 12) due to inclusion of feature i and it thus indicates the benefit of including that 
feature in the model. The sparsity term iS , on the other hand, measures the decrease 

in log likelihood value due increase in the covariance term R . It thus indicates the 
cost of including an irrelevant feature in the model. 

In sequential learning algorithm, the model is initialized with the bias term. In each 
successive iteration, the ‘quality’ and the ‘sparsity’ of all the features are calculated. 

The feature which is not in the model and for which the value of 2
iQ  relative to the 

value of iS  is greatest, is included in the model. Similarly, the feature/s that are in the 

model but for which the value iS  is greater the value of 2
iQ  are removed from the 

model. The iteration terminates when no feature can be included or excluded from the 
model, or the improvement in log likelihood function (Eq. 12) is below a threshold 
value (~ machine precision). 

At convergence, the algorithm yields a set of features ( )F  that are deemed most 

relevant for making predictions, along with the posterior distribution of the associated 
weight vectors ,  iw i∀ ∈F . The algorithm also provides an estimate of hyperparame-

ter ( )i iα ∀ ∈F , and the noise variance  2σ . The weight iw  and hyperparameter iα , 

i∀ ∉F  , are notionally set to zero and infinity, respectively. 

The distribution of predictand y∗  for new set of predictors ∗z  is obtained as 

( ) ( )2| ,
y y

p y μ σ∗ ∗
∗ ∗ =z N  (16)

where the mean and variance of the predicted value are, respectively, 

( )T
wy

μ ∗
∗= μ φ z  (17)

 

( ) ( )T2 2ˆ wy
σ σ∗

∗ ∗= φ z Σ φ z  (18)

Here, vector ( ) T
1,∗ ∗⎡ ⎤= ⎣ ⎦φ z z , wμ  and wΣ  are the mean and covariance of the pos-

terior weight distribution and 2σ̂  is the estimated error variance. 
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3   Data Used in This Study 

3.1   Predictors 

It has been suggested in the literature that the seasonal climate predictability is mainly 
derived from slow varying surface boundary conditions, like SST, snowcover, vegeta-
tion, and soil moisture that influence global atmospheric circulation and thus global sur-
face climate (Charney and Shukla 1981). Among surface boundary conditions, SST is 
the most popular predictor for seasonal forecast. It is the principal surface boundary 
condition that influences the atmospheric seasonal variability (Barnston et al. 2005), and 
it is the only variable for which long term consistent records are available. 

SST has long been used as a predictor for AISMR. Sahai et al. (2003) and recently 
Pai and Rajeevan (2006) used only global SST data to develop long range forecasting 

model for AISMR. They reported high correlation (≈ 0.8 to 0.9) between observed 

and predicted values during validation period. Further, there is a plethora of studies 
that have investigated the link between AISMR and SST in different regions of the 
world including (i) Pacific Ocean (Mooley and Munot 1997; Kumar et al. 2006; 
Krishnan and Sugi 2003), (ii) Atlantic Ocean (Srivastava et al. 2002; Goswami et al. 
2006), (iii) Indian Ocean (Kucharski et al. 2006; Li et al. 2001; Clark et al. 2000), (iv) 
Arabian Sea (Rao and Goswami 1988; Kothawale et al. 2007), and (v) regions sur-
rounding Australia and Indonesia (Nicholls 1983, 1995). These studies indicate that a 
substantial portion of the interannual variability in AISMR can be explained by SST 
alone and hence the potential predictors were derived only form global SST data in 
this study. 

Monthly 10 resolution global SST data from 1870 onwards is available from the 
Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST1) (Rayner et 
al. 2003). The dataset is based on interpolation of measured SST values compiled in 
International Comprehensive Ocean Atmosphere Data Set (ICOADS) database, and 
Met Office Marine Data Bank (MDB). The dataset is constructed using a reduced 
space optimal interpolation procedure. This dataset is updated every month and can be 
obtained from Hadley Centre’s website http://hadobs.metoffice.com/hadisst/. 

3.2   Predictand 

The predictand used in the study is All India Summer Monsoon Rainfall (AISMR). 
The monthly area weighted summer monsoon rainfall data over India (Parthasarathy 
et al. 1994), which extends from 1871 to 2004, is extracted from Indian Institute of 
Tropical Meteorology, Pune, web site http://www.tropmet.res.in. Primary source of 
the data is India Meteorological Department. 

4   Methodology 

This section outlines the procedure involved in processing SST and rainfall data, iden-
tifying SST patterns that are good predictors for AISMR, and developing RVM model 
to forecast AISMR. 
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Fig. 1. Partitioning of HadISST1 data into five oceanic sectors: 1-Tropical Pacific sector (300S 
– 300N), 2-North Pacific sector (north of 300N), 3-Tropical Atlantic sector (300S – 300N), 4-
North Atlantic sector (north of 300N), and 5-The Indian Ocean sector (north of 300S). 

As the first step, the rainfall data were standardized (subtracted by the long term 
mean and divided by the standard deviation). Following Lau et al. (2002), the SST 
data were partitioned into five non-overlapping sectors-  Tropical Pacific sector 
(300S−300N), North Pacific sector (north of 300N), Tropical Atlantic sector 
(300S−300N), North Atlantic sector (north of 300N), and Indian Ocean sector (north of 
300S) as shown in Fig. 1. This was done because intrinsic ocean variability outside of 
the tropical Pacific Ocean is known to be frequently obscured by strong ENSO signal. 
Partitioning of data allows studying SST variability in all sectors separately. 

The partitioned SST data was then used to calculate the SST anomalies (SSTa) and 
tendencies of SST anomalies (SSTt). SSTa at a grid point for a given season is defined 
as the deviation of SST value from its long term average. SSTt for a given season is 
defined as the change in SSTa from the previous season. SSTt values represent the 
evolution of SST data over time and are reported to have better predictive information 
than SSTa (Sahai et al. 2003). In this study, the time lag of SSTa and SSTt were var-
ied from 1 to 12 months behind the start of monsoon month (June). 

After preliminary exploratory data analysis (Tukey 1977), the rainfall, and the SST 
data were divided into a training set (1900-1950) and a test set (1951-2005). SST data 
prior to 1900 is less reliable (Smith and Reynolds 2003) and therefore not considered 
in the analysis. Following this, Pearson product-moment correlation coefficients be-
tween SST data (SSTa and SSTt) and rainfall data (AISMR) in training set were cal-
culated. Potential predictors among SSTa and SSTt from different oceanic sectors 
were screened by imposing various thresholds (0.15 to 0.45) on the absolute value of 
correlation coefficients. The screening step is based on the assumption that the rele-
vant features will exhibit some correlations on their own so that they can be segre-
gated from the irrelevant features. Screening thus reduces the noise in the raw data, 
and is vital for the success of the following steps. The screened variables were then 
processed through probabilistic principal component analysis (PPCA) to extract prin-
cipal components that preserve maximum variance in the screened data. The number 
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of principal components to be retained for subsequent analysis was decided by Bayes-
ian model selection method described in Sect. 2.2. 

The principal components (PCs) obtained from the PPCA serve as inputs to the 
relevance vector machine (RVM). RVM uses automatic relevance determination to 
identify the most relevant features (PCs) for forecasting AISMR. It also builds a lin-
ear relationship between identified predictors and AISMR of the form given by Eq. 8. 
RVM, by virtue of its Bayesian formulation, progressively updates the predictor set, 
and its relationship with predictand. In the sequential learning algorithm adopted in 
this work (Sect. 2.3), the posterior distribution of model parameters at a given step 
become prior distribution of the parameters for the next step. Bayes’ rule is then used 
to update the posterior distribution in light of new data. 

5   Results and Discussion 

Exploratory data analysis was done with a view to understand the relationship be-
tween SST data [SST anomalies (SSTa) and tendency of SST anomalies (SSTt)] and 
All India Summer Monsoon Rainfall (AISMR). To this end, a 30 year moving win-
dow was used to calculate the correlation between AISMR and principal components 
of SSTa and SSTt over different oceanic sectors for different time lags. Pearson prod-
uct-moment correlation and Kendall’s tau rank correlation coefficient were calcu-
lated. Typical results of the analysis are shown in Fig. 2. It is evident from the figure 
that the relationship between AISMR and SST is not static but changes with time. 
These results are in agreement with the previous studies discussed in Sect. 1. Fur-
thermore, the results highlight the need for developing a dynamic feature selection 
and learning model for forecasting AISMR.  

The SSTa and SSTt values in the training data were used to screen the set of po-
tential predictors following the procedure outlined in Sect. 4. The screened variables 
were processed through probabilistic principal component analysis (PPCA). The 
number of principal components that were to be retained for the subsequent analysis 
was estimated by using Bayesian model selection method (Sect. 2.2). A typical result 
of this selection method is given in Fig. 3. The figure shows the marginal likelihood 
computed by varying the number of principal components. The optimum number cor-
responds to maximum value of the marginal likelihood. 

The PCs obtained in the foregoing step serve as inputs to the RVM model, while 
standardized values of AISMR formed its output. The model was initially trained for 
the period 1901 to 1950. The trained model was then used to forecast the value of 
AISMR for 1951. After the forecast was made, the observed value of AISMR for year 
1951 was used to update the RVM parameters. During an update operation, the pre-
dictors that have lost their relevance are removed form the model, new relevant pre-
dictors are added, and the relationship between existing predictors and AISMR is re-
vised. The steps are repeated to sequentially generate forecast for the test period 
(1951 to 2005). The correlation between the forecasted and the observed AISMR dur-
ing the test period was computed. The analysis was repeated number of times by vary-
ing the threshold for screening predictors in the range 0.15 to 0.4. The results obtained 
are presented as a solid line in the group of curves labeled ‘C’ in Fig. 4. The dashed 
line in the ‘C-group’ are the results obtained from the same analysis, but this time  
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Fig. 2. Thirty year moving window correlation between AISMR and SST data. Text on each 
panel denotes the type of variable [SST anomaly (SSTa) / tendency of SST anomaly (SSTt)], 
oceanic sector, order of principal component, month of observation, and time lag (in months) 
from the start of monsoon season (June). 
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Fig. 3. Identification of number of principal components (PCs) using Bayesian model selection. 
The figure corresponds to the case for which the threshold on correlation for screening predic-
tors was set to 0.15. The model selects 36 as the optimum number of PCs.  

calculating PCs using standard principal component analysis (SPCA) instead of 
PPCA. Number of PCs was chosen to be same as the optimum number of PCs yielded 
by Bayesian model selection method for PPCA. It is evident for the figure that the 
model performed poorly in forecasting AISMR values. The results obtained are in 
contradiction with earlier findings that about 80% of inter annual variability in 
AISMR can be explained by global sea surface temperatures prior to monsoon 
months. It should be pointed out that qualitatively similar results were obtained for 
different choices of training and testing periods. 

How can this miss-match be explained? Here is a possible explanation: In the lit-
erature, high correlation between forecasted and observed rainfall during independent 
test period has been reported without allowance for the selection bias. The selection 
bias is induced because the test data are used at the first instance to select the predic-
tors, which are then used to develop the forecast model. But what can be the magni-
tude of selection bias? To answer this question, the following analysis was done. The 
entire data from 1901 to 2005 (i.e. both training data and test data) were used to 
screen the set of potential predictors. The screened variables were then processed  
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Fig. 4. Comparison of observed and forecasted rainfall values for testing period (1951 to 2005). 
The correlations were calculated for three strategies of screening potential predictors: (A) using 
entire data, (B) using training and alternate test data, and (C) using only test data. 

through principal component analysis, the output of which forms the input to RVM 
model. The RVM model was trained in the same way as done before. The results ob-
tained are shown as lines in the group of curves labeled ‘A’ in Fig. 4. The solid line 
corresponds to analysis using PPCA, whereas dashed line corresponds to SPCA. 
Clearly, a very high correlation can be obtained in this way. The results indicate that 
the selection bias can be very high and the results obtained without making allowance 
for it can be misleading. The selection bias, in general increases as the number of po-
tential predictors increases. We further note that the concerns of getting deceptive  
results due to selection bias have been reported in other contexts. For example, Am-
broise and McLachlan (2002) brought out the effects of selection bias in the context 
of cancer diagnosis and treatment. 

Cross-validation and bootstrap estimates are the commonly used methods for as-
sessing the performance of a model, when the number of data points is relatively 
small and the number of possible predictors large. However, these methods are not  
directly applicable to the dataset where the relationship between predictors and pre-
dictands is evolving over time. To address this problem a simple strategy is devised. 
Alternate years from the test data set are used along with the training dataset to screen 
the possible set of predictors. The performance of model is then assessed on forecast-
ing the values of left over years in the test data set. The performance measured using 
this strategy is more realistic for an operational forecast model. The results obtained 
using this method are presented as group of curves labeled ‘B’ in Fig. 4. As expected  
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Fig. 5. Comparison of static and dynamic forecast models in forecasting rainfall values for test-
ing period (1951 to 2005). The correlations were calculated for three strategies of screening po-
tential predictors: (A) using entire data, (B) using training and alternate test data, and (C) using 
only training data. 

the correlation between forecasted and observed rainfall values is in between two pre-
vious cases. Further, form Fig. 4 it can be inferred that the performance of forecasting 
model using PPCA or SPCA are similar. Nonetheless, PPCA is preferable because it 
provides an objective way of deciding the number of PCs. 

The performance of a dynamic and a static model are also compared and the results 
are presented in Fig. 5. Both the static and the dynamic models were trained using 
data from 1901 to 1950. The dynamic model updates itself at each step as new data 
becomes available, while the static model remains same. The correlation between the 
forecasted and the observed values for the two models, for all three ways of screening 
potential predictors i.e. using: (A) entire data, (B) training and alternate test data, and 
(C) only training data are shown in Fig. 5. As expected the performance of dynamic 
model is better than static model. The advantages of dynamic model over static model 
are more pronounced for case B. The results corroborate the earlier findings that the 
relationship between SST and AISMR are continuously changing over time and that 
the dynamic forecast model is more suitable for forecasting AISMR. 

6   Concluding Remarks 

In this study, an attempt has been made to explore the links between All India Sum-
mer Monsoon Rainfall (AISMR) and global sea surface temperature (SST). The  
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exploratory data analysis indicated that the relationship between AISMR and SST 
over different oceanic sectors is not static, but continuously changes with time. Not 
only that, the analysis revealed that the set of predictors for AISMR also changes with 
time. These findings indicate that a reliable statistical forecast of AISMR can be ob-
tained only by a model that progressively updates itself by accounting for these 
changing relationships. Further, it was pointed out that any sort of ad-hoc or hand-
crafted method of updating the model is unlikely to be optimal. 

To address the above mentioned problem in a principled way, a Bayesian frame-
work was adopted in this study. A methodology involving probabilistic principal 
component analysis, Bayesian model selection, and a sparse Bayesian learning algo-
rithm (relevance vector machine) was introduced. The methodology automatically se-
lects the best predictors in the global SST data for a forecasting model using principle 
of automatic relevance determination. Further, it progressively updates the predictor 
set and the relationship between predictors and predictand (AISMR) as new data be-
comes available. 

The application of the proposed methodology to the forecasting of AISMR indi-
cated that the strategy of constantly updating the model consistently provided better 
results than its static counterpart. However, in contrast to the results reported in the 
literature, the model developed in this work could only partially explain the interan-
nual variability in the AISMR series. This discrepancy in the results indicated towards 
the problem of selection bias. It was found that, in the literature, high correlation be-
tween forecasted and observed rainfall during independent test period has been re-
ported without allowance for the selection bias (i.e. test data are used to select the 
predictors for the model). To further understand the implications of selection bias in 
forecasting AISMR, its magnitude was estimated. The magnitude of selection bias 
was found to be strikingly high. The correlation between observed and forecasted 
value of AISMR jumped from ~ 0.25 to ~ 0.8 for unbiased to biased forecasts. These 
findings provide an inkling as to why there are frequent failures in forecasting 
AISMR even when model prediction error is small. It further points out the need to 
develop a strategy for estimating model prediction error for the systems that evolve 
over time. Towards this end, a simple strategy is recommended that considers alter-
nate years in the test data for estimating model prediction error. 

The methodology developed in this study is limited in several ways. Firstly, the 
methodology does not account for the measurement errors in SST data which is ubiq-
uitous and significantly vary in space and time. Secondly, the sequential learning al-
gorithm of relevance vector machine (RVM) is sensitive to the noise in the data. The 

problem is particularly pronounced for estimating noise term 2σ . Thirdly, the se-
quential learning algorithm for RVM tries to maximize the marginal likelihood of the 
data; however it does not guarantee a global optimum solution. The last two problems 
can be partly addressed by performing Monte Carlo simulations. Nevertheless, in 
spite of many limitations, the preliminary results obtained from the proposed method-
ology are promising. However, several avenues should be explored to further refine 
this attempt. 

The true unbiased skill in forecasting AISMR using global SST data is very low. 
Even the use of sophisticated dynamic forecasting model can only marginally im-
prove the forecasting performance. This brings to the fore the fact that the vagaries of 
Indian monsoon are difficulty to predict. The skillful forecasting of AISMR still  
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remains a challenge. Perhaps more advanced soft-computing techniques in association 
with improved physical understanding of the monsoon system will improve the qual-
ity of forecasts. 
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